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Selective Adaptation to “Oddball” Sounds by the Human

Auditory System
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Adaptation to both common and rare sounds has been independently reported in neurophysiological studies using probabilistic stimulus
paradigms in small mammals. However, the apparent sensitivity of the mammalian auditory system to the statistics of incoming sound
has not yet been generalized to task-related human auditory perception. Here, we show that human listeners selectively adapt to novel
sounds within scenes unfolding over minutes. Listeners’ performance in an auditory discrimination task remains steady for the most
common elements within the scene but, after the first minute, performance improves for distinct and rare (oddball) sound elements, at
the expense of rare sounds that are relatively less distinct. Our data provide the first evidence of enhanced coding of oddball sounds in a
human auditory discrimination task and suggest the existence of an adaptive mechanism that tracks the long-term statistics of sounds

and deploys coding resources accordingly.

Introduction
For many species, survival depends on the ability to encode the
current sensory scene with a high degree of accuracy, while re-
maining alert to novel events in the environment (Bregman,
1990; McDermott, 2009). These two demands appear in conflict
in terms of their call on neural resources. Adaptation to “en-
hance” representation of both common (Dean et al., 2005, 2008;
Sadagopan and Wang, 2008; Watkins and Barbour, 2008; Wen et
al., 2009; Barbour, 2011; Jaramillo and Zador, 2011; Rabinowitz
et al., 2011; Walker and King, 2011) and rare (Ulanovsky et al.,
2003, 2004; Nelken, 2004; Peréz-Gonzalez et al., 2005; Malmierca
etal,, 2009; Yaron et al., 2012) sounds has been reported in neu-
rophysiological studies, seemingly in the same brain centers and
using similar probabilistic stimulus paradigms. How then does
sensitivity to the statistical distribution of sounds manifest in
sensitivity to both high-probability and low-probability events?
To assess neural sensitivity to the statistics of sounds, Dean et
al. (2005, 2008) introduced a probabilistic paradigm in which
stimulus intensities were selected according to distributions fea-
turing low-probability regions (LPRs) and high-probability re-
gions (HPRs). We used a similar paradigm in which listeners
were presented with three variants of a stimulus, one of which
occurred with high probability (80%) and the other two with low
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probability (10% each). Stimuli consisted of two sounds (noise
bursts). One presentation of the stimulus, followed by a response,
constituted a trial. After hearing the stimulus, the subject was
asked to report “which sound was louder?”, indicating their re-
sponse by pressing 1 or 2 on a keypad. In the first experiment, the
three stimulus variants differed in terms of their overall intensity
(35, 55, or 75 dB SPL). In the second experiment, the three vari-
ants differed in terms of the intersound interval (ISI; 350, 700, or
1050 ms).

Materials and Methods

The overall method was broken down into a two-stage procedure. The first,
or calibration, stage determined the just-noticeable difference (JND) for
intensity for pairs of sounds at each possible intensity and ISI generating, in
each case, the intensity difference for a fixed a priori probability of success in
the discrimination task (~80%) for each listener. The second, probabilistic,
stage presented the listener with three different stimuli, each set to the sound-
level INDs determined in the calibration stage, and stimuli occurring with
a priori probability within a given epoch (Fig. 1).

Stimuli and task. Listeners discriminated intensity of pairs of 50 ms
bursts of wideband noise (20 Hz—20 kHz), gated with 5 ms raised-cosine
ramped envelopes and separated by a silent ISI. One of the noise bursts
was randomly selected to be louder than the other and the task (in each
trial) was to indicate on a keypad which sound (of the pair) was louder.
Presentation of each new trial followed a subject’s registration of the
response to the previous trial. Directly after the response was entered,
subjects were provided correct/incorrect feedback. Each noise burst was
generated randomly before presentation. In the first experiment, the
root-mean-squared (rms) SPL was 35, 55, or 75 dB and the ISI was fixed
at 350 ms. In the second experiment, the rms SPL was fixed at 55 dB and
the ISI was 350, 700, or 1050 ms. Noise bursts were generated digitally at
24-bit resolution. Beyerdynamic DT100 isolating headphones were used
to present the stimulus (diotic) to listeners directly from a computer, ata
sampling rate of 48,000 Hz.

Experiment 1: calibration procedure. For each of the three possible stim-
uli for which intensity JNDs were obtained (35, 55, 75 dB), an adaptive
three-down one-up, two-interval forced-choice procedure was used to
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Minimum step size was limited to 0.1 dB. After
20 reversals, the estimated JND was taken as
the arithmetic mean of the last 10 reversals. The
three runs, corresponding to the three stimuli,
were conducted in a block lasting no longer
than 20 min. Within-block run order was
random. Each listener completed one block.
The slowly converging adaptive procedure
was designed to take ~5 min per run, allowing sufficient time for long-
term adaptation to converge before the ultimate estimate of JND being
acquired.

Experiment 1: probabilistic procedure. In the second, probabilistic,
stage, listeners were presented with a block of 1000 individually cali-
brated stimuli (35, 55, 75 dB), where the intensity difference for each
stimulus was the estimated JND obtained from the previous calibration
procedure. Unbeknownst to the listeners, the 1000 trials were divided
into 100-trial epochs. Within an epoch, each trial was selected from the
three possible stimuli according to a priori distributions (Fig. 1a), where
one stimulus (i.e., a pair of noise bursts) was selected at 80% probability
and the other two at 10% probability each (Fig. 1b). Over an epoch, this
generated three possible distributions for the three possible stimuli: A,
10:10:80%; B, 10:80:10%; and C, 80:10:10% (Figs. 2a—c, 3a—c). Ten con-
secutive epochs were presented in a block. For each epoch, one of the
three distributions was chosen with equal likelihood. This was performed
in the following manner: three of each kind (A-C) were included plus
one (of A/B/C) at random, for a total of 10 epochs. The epoch order was
randomly shuffled and any permutations in which two sequential distri-
butions of the same kind occurred (e.g., ACCBABACBC, where the sec-
ond C immediately follows the first C) were rejected and reshuffled. Each
listener completed one block (of 10 epochs), taking ~30 min.

Experiment 2. The calibration and probabilistic procedures of Experi-
ment 1 were replicated for Experiment 2, where the three possible stimuli
had ISIs of 350, 700, or 1050 and stimulus level was fixed at 55 dB SPL.

Participants. Nine normal-hearing listeners participated (Experiment
1: mean * SD, 29 * 4 years, one female; Experiment 2: mean *+ SD, 30 =
5 years, two females). Seven of the listeners in Experiment 2 also partic-
ipated in Experiment 1. Participants were voluntary, unpaid, and gave
verbal informed consent before the experiment. The experimental pro-
tocol (including consent) was approved by the ethics committee of
Queen Mary University of London.

Figure 1.

Results

In each experiment, the three possible a priori distributions pro-
vide three contexts within which trials of each stimulus can be
assessed. For each listener, continuous percentage-correct func-
tions, for each stimulus in each context (3 X 3), were calculated
using a 40-trial selective (rectangular) sliding window collapsed
across epochs (N = 10). Each function was tested for significant
overall fluctuations in performance (Friedman rank sum test),
and for fluctuations in the difference in performance between
each pair of stimuli within a given context (Friedman rank sum
test on the derivative). The latter derivative test identifies fluctu-
ations that indicate selectivity and/or prioritization between
stimuli. The Durbin—Watson test statistic across all data of both
experiments was close to 2 (mean, 1.93; SD, *=0.39) indicating
that correction for serial correlation was not required. Correla-

Stimulus probability. a, In each of two experiments, listeners were presented with 1000 calibrated trials. Each trial
was selected from three possible stimuli according to a priori distributions that changed before each 100-trial epoch. The three
stimuli consisted of changes in different sound features (intensity in Experiment 1, ISlin Experiment 2). Within an epoch, one of the
three stimuli was selected with a priori probability of 80% (red, high-probability stimulus) and the other two versions were each
selected with 10% probability (blue, green, low-probability stimulus). b, Plot of an example epoch consisting of 100 stimuli
selected at random according to the probabilities described in a.
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Figure2. Intensity discrimination accuracy changed over time for different intensity statis-

tics. a— ¢, Mean (= SEM) accuracy for each stimulus (35, 55, or 75 dB) in different epochs. The
color-coded correlations (r values shown below each respective diagram distribution) capture
significant overall trends with time. For each epoch, correlations were also computed between
the two respective low-probability (10%) functions and r values are noted (in black) with
bracket. Correlation values are only given where significant (p << 0.01). a, Performance in
epochs where 35 dB trials occur with 80% probability. b, Performance in epochs where 55 dB
trials occur with 80% probability. ¢, Performance in epochs where 75 dB trials occur with 80%
probability. Asterisks denote significant fluctuations in performance (p << 0.01, Friedman rank
sum test). Each trial corresponds to ~2 s (mean trial time across both experiments, 2's; SD,
+03).

tions, computed on the grand-average performance functions,
are given with 95% confidence intervals (Cls).

Experiment 1

From the calibration procedure, the mean JNDs (=SD) were as
follows: 2.4 = 1.1dB, 2.5 = 1.1 dB, and 2.6 = 1.6 dB for the 35, 55,
and 75 dB stimuli respectively. Figure 2 plots mean performance
(+SEM) for the three calibrated stimuli (35, 55, 75 dB) within
each possible context. Figure 2a plots performance in the three
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Accuracy changed over time for different temporal statistics. a— ¢, Mean (== SEM) accuracy for each stimulus (ISI of 350, 700, or 1050 ms) in different epochs. The color-coded

correlations (r values shown below each respective diagram distribution) capture significant overall trends with time. For each epoch, correlations were also computed between the two respective
low-probability (10%) functions and r values are noted (in black) with bracket. Correlation values are only given where significant (p << 0.01). a, Performance in epochs where 350 ms trials occur
with 80% probability. b, Performance in epochs where 700 ms trials occur with 80% probability. ¢, Performance in epochs where 1050 ms trials occur with 80% probability. Asterisks denote
significant fluctuations in performance (p << 0.01, Friedman rank sum test). d, Example waveforms for pairs of 50 ms noise signals. By varying the interval (ISI) between two sounds, we vary the
effective modulation power spectrum. The left side shows the waveforms with different ISIs. The right side of the panel shows the corresponding envelope power spectrum. Each trial corresponds

to ~2's (mean trial time across both experiments, 2's; SD, =0.3).

possible stimuli when the 35 dB stimulus is selected at 80% prob-
ability. Figure 2b,c plots the same for the three possible stimuli
when the 55 and 75 dB stimuli respectively are selected at 80%
probability.

For all three high-probability stimuli, performance shows lit-
tle evidence of significant fluctuation (not significant, Friedman
rank sum test), suggesting that adaptation, if it occurs, is rapid for
common sounds (Dean et al., 2005, 2008). Indeed, it should be
noted that our paradigm (including the low-pass effects of the
40-trial sliding integration window) practically precludes cap-
ture of such adaptation. In Figure 24, performance for low-
probability stimuli (55 and 75 dB) is relatively steady (but lower)
until approximately half-way through the epochs when perfor-
mance for the two stimuli starts to diverge, with performance for
the 55 dB stimulus declining (not significant, Friedman rank sum
test), and for the 75 dB stimulus increasing (x*so) = 119.2,p <
0.01, Friedman rank sum test) until it surpasses even that for the
35 dB (HPR) stimulus. Over the whole epoch, performance for
low-probability stimuli at 55 and 75 dB is inversely correlated
(r = —0.88, p < 0.01, 95% CI [—0.79, —0.92]) and diverges
around the “breakpoint” at ~30 trials: performance deteriorates
for the 55 dB stimulus (r = —0.79, p < 0.01, 95% CI [—0.67,
—0.87]), while performance for the 75 dB stimulus improves
(r =091, p < 0.01, 95% CI [0.85, 0.94]). Further evidence of
selectivity/prioritization is seen by examining the derivatives;
performance for the 75 dB stimulus changes relative to that for
the 55 dB stimulus (x*(so) = 94.7, p < 0.01, Friedman rank sum
test on the derivative between the stimuli) and relative to the 35
dB (HPR) stimulus (x* s, = 140.6, p < 0.01, Friedman Rank
Sum test on the derivative of performance between the stimuli).

In Figure 2b, when the HPR corresponds to the 55 dB stimu-
lus, performance shows little evidence of significant fluctuation
for any stimulus (not significant, Friedman rank sum test). In
Figure 2¢, when the HPR corresponds to the 75 dB stimulus,
performance for the low-probability stimuli is similar to that of
Figure 2a; performance for the (low probability) 35 and 55 dB
stimuli is inversely correlated (r = —0.47, p = 0.02, 95% CI
[—0.24, —0.65]) and splits after the breakpoint; performance for
the 55 dB stimulus deteriorates (not significant, Friedman rank
sum test), while performance for the 35 dB stimulus improves
(not significant, Friedman rank sum test) gradually (r = 0.63, p <
0.01, 95% CI [0.45, 0.76]).

These data are consistent with the existence of an adaptive
mechanism that tracks the statistics of the stimulus, refining pre-
dictions over timescales of ~1 min. For the “most odd” stimulus,
when the HPR corresponds to the 35 and 75 dB stimuli, perfor-
mance improves (at the expense of the alternate low-probability
stimulus) after ~1 min, suggesting the slow build-up of oddball
selectivity. When the HPR corresponds to the 55 dB stimulus
(Fig. 2b), however, neither of the other two stimuli is “more odd”
than the other (and the 55 dB stimulus lies at the mean of the
whole distribution), and overall performance is similar for all
stimuli. This means that statistical evidence for stimulus priori-
tization is relatively weak.

Experiment 2

From the calibration procedure, the mean JNDs (=SD) were as
follows: 2.4 = 0.9dB, 2.3 = 0.9 dB, and 2.1 = 0.4 dB, for the 350,
700, and 1050 ms stimuli respectively. Figure 3 plots mean per-
formance (£SEM) for the three calibrated stimuli (350, 700, 1050
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ms) within each possible context. Figure 3a plots performance for
the three possible stimuli when the 350 ms stimulus is selected at
80% probability. Figure 3b,c plots the same for the three possible
stimuli when the 700 and 1050 ms stimuli respectively are se-
lected at 80% probability.

Again, for all three high-probability stimuli, performance
shows little evidence of significant fluctuation (not significant,
Friedman rank sum test), suggesting that adaptation, if it occurs,
is rapid for common sounds. In Figure 3a, performance for low-
probability stimuli (700 and 1050 ms) is relatively steady until
approximately half-way through the epoch when the two func-
tions diverge abruptly, with performance for the 700 ms stimulus
declining (x* s, = 134.6, p < 0.01, Friedman rank sum test), and
that for the 1050 ms stimulus increasing (x50, = 84.6, p = 0.02,
Friedman rank sum test) until it surpasses that for the 350 ms
(HPR) stimulus. Over the whole epoch, mean performance for
low-probability stimuli at 700 and 1050 ms is inversely correlated
(r=—0.8,p<0.01,95% CI [—0.7, —0.88]) and diverges around
the “breakpoint” at ~30 trials. The derivative provides further
evidence of this selectivity/prioritization; performance for the
1050 ms stimulus changes with respect to that for the 350 ms
stimulus (x50, = 176.5, p < 0.01, Friedman rank sum test on the
derivative of performance between the stimuli).

In Figure 3b, when the HPR corresponds to the 700 ms stim-
ulus, performance for the low-probability stimuli (350 and 1050
ms) is positively correlated (r = 0.73, p < 0.01, 95% CI [0.58,
0.83]). Performance deteriorates early and then rises around a
similar breakpoint to that observed in the other data. The fluctu-
ations in performance only reach significance for the 350 ms
stimulus (X2(59) = 101.4, p < 0.01, Friedman rank sum test),
offering some evidence of oddball effects, but are approximately
paralleled for the (correlated) 1050 ms stimulus, indicating little
evidence of prioritization/selectivity.

In Figure 3¢, when the HPR corresponds to the 1050 ms stim-
ulus, performance for the low-probability stimuli is again in-
versely correlated (r = —0.94, p < 0.01, 95% CI [—0.9, —0.96]).
For the 700 ms stimulus, performance deteriorates (x*so) =
102.5, p < 0.01, Friedman rank sum test) gradually (r = —0.97,
P <0.01,95% CI[—0.94, —0.98]), while performance for the 350
ms stimulus improves (x?(so) = 82.9, p < 0.01, Friedman Rank
Sum test) with a similar gradient (r = 0.96, p < 0.01, 95% CI
[0.94, 0.98]) and surpasses performance for the HPR (1050 ms)
stimulus. Again, the derivatives provide further evidence of selec-
tivity/prioritization; performance for the 350 ms stimulus
changes with respect to that for the 700 ms stimulus (x* o) =
135.7, p < 0.01, Friedman rank sum test on the derivative of
performance between the stimuli) and with respect to that for
the 1050 ms stimulus (x* o) = 124, p < 0.01, Friedman rank
sum test on the derivative of performance between the stim-
uli). Also, performance for the 700 ms stimulus changes with
respect to that for the 1050 ms stimulus (x?(59) = 105.8, p <
0.01, Friedman rank sum test on the derivative of performance
between the stimuli).

Consistent with the first experiment assessing stimuli of dif-
ferent intensities, the inverse correlation of performance in low-
probability stimuli is only evident when the high-probability
stimulus is presented with either low (350 ms) or high (1050 ms)
ISIs. Additionally, the low-probability stimulus furthest in ISI
from the high-probability stimulus ISI is enhanced after the
breakpoint at the expense of the competing low-probability stim-
ulus. This further supports the notion that the auditory system
prioritizes resource allocation in favor of those low-probability
sounds most different to the high-probability sounds. In both
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experiments, the selective enhancement of low-probability “odd-
ball” sounds emerges around trial 30, which equates to ~60 s into
the epoch (mean trial time, 2 s; SD, *0.3).

Discussion

We have demonstrated in human listeners a common strategy for
processing the statistical distributions of sounds varying in inten-
sity or timing. Sounds with the most-commonly occurring inten-
sities, or presented with the most-commonly occurring intervals,
are strongly represented throughout. Selective enhancement of
novel events then appears to emerge after some time within the
high-probability context. Discrimination performance for low-
probability sounds that are most unlike the high-probability
sounds is enhanced at the expense of discrimination in low-
probability sounds that are most like the sounds heard with high
probability. It is also striking that discrimination performance in
these “oddball” low-probability sounds can surpass that of high-
probability sounds (Fig. 3). Note too, that while previous reports
of sensitivity to “oddball” sounds indicate improved detection of
these events (Slabu et al., 2012), here we demonstrate improved
discrimination for low-probability events.

At a phenomenological level, the adaptation evident in our
data is consistent with the concept of perceptual learning (Skoe et
al., 2013; de Souza et al., 2013). Perceptual learning is thought to
reflect enhancement of perception due to synaptic plasticity
(which follows practice) and hence our data may reflect rapid
perceptual learning. More generally, the data are consistent with
a process wherein listeners construct an internal model of the
acoustic input that processes surprising, or “oddball,” stimuli.
Although there are several potential neural mechanisms that
might underpin such adaptation, it is implied that the neural
representation of the stimuli changes over time.

Neural mechanisms

Our data are consistent with experimental recordings from small
mammals in which firing rates of auditory neurons adapt to the
unfolding distributions of sound intensity (Ulanovsky et al.,
2003, 2004; Nelken, 2004; Dean et al., 2005, 2008; Peréz-Gonzalez
et al., 2005; Sadagopan and Wang, 2008; Watkins and Barbour,
2008; Malmierca et al., 2009; Wen et al., 2009; Barbour, 2011;
Jaramillo and Zador, 2011; Rabinowitz et al., 2011; Walker and
King, 2011; Yaron et al., 2012). This feature of neural coding,
which emerges at the level of the primary auditory nerve, im-
proves coding (discrimination) of the most-likely occurring in-
tensities in a distribution of sounds (Dean et al., 2008). As a
population, midbrain neurons also show the capacity to accom-
modate bimodal (with equal probability) distributions of sound
intensity (Dean et al., 2005), suggesting the possibility of simul-
taneous adaptive coding for multiple sounds with different fea-
tures. At both the midbrain (Dean et al., 2008) and cortical
(Ulanovsky et al., 2004; Yaron et al., 2012) levels, neurons dem-
onstrate adaptation time scales on the order of hundreds of mil-
liseconds to tens of seconds. The breakpoint in performance at
~60 s is relatively close to the time-scale of long-term adaptation
reported in these studies. This time scale is also consistent with
recent studies of slowly ramped intensity increments (Simpson
and Reiss, 2013; Simpson et al., 2013) and brainstem-mediated
“rapid learning” (Skoe et al., 2013), suggesting a common role of
long-term adaptation in humans. Ulanovsky et al.’s (2004) study
in cats also demonstrated that cortical neurons adapt more
quickly to high-probability sounds than to low-probability
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sounds, and that multiple timescales of “stimulus-specific” adap-
tation occurred concurrently. These multiple timescales appear
consistent with the features of our behavioral data.

The adaptation to temporal statistics implicit in our data is less
straightforward to explain, but nevertheless is consistent with
recent reports implicating auditory cortex neurons in adaptive
coding of temporal intervals (Jaramillo and Zador, 2011). In both
cases, the timing intervals may be considered in terms of (low) mod-
ulation rates. Emerging evidence suggests auditory cortex maintains
a bank of independent cortical modulation filters (CMFs), each
tuned to different (low) modulation rates (Xiang et al., 2013). CMFs
have been implicated in speech processing (Ding and Simon, 2013)
and the detection of intensity changes (Simpson and Reiss, 2013;
Simpson et al,, 2013). Contrast gain adaptation has been demon-
strated in cortical neurons, whereby functions describing neuronal
firing rate versus sound level show gain adjustments to best match
the intensity variance of the stimulus (Rabinowitz et al., 2011). Com-
bining these two cortical processing features, by assuming that con-
trast and modulation processing occurs by common means, a
plausible explanation for adaptation to time intervals lies in the spec-
ificity of adaptation to particular CMFs. Our temporal stimuli can be
considered in terms of the statistical manipulation of modulation
energy (Fig. 3d) with respect to the rate at which energy is modu-
lated. As shown in Figure 3d, the ISIs of 350, 700, and 1050 ms
produce energy in the envelope modulations with fundamental fre-
quencies of ~3, 2, and 1 Hz respectively, and would, therefore, max-
imally excite different modulation filters. The power spectra in
Figure 3d also demonstrate that the almost instantaneous envelopes

Stimulus continuum

Stimulus continuum

Probability
©c o990
[\S I e > B¢ ]

Stimulus continuum

A phenomenological model. a— ¢, Cumulative influence on the three neural groups for the three stimulus distribu-
tions. d, Dependence of gain on cumulative input. e—g, Predictions of probability correct for the three stimuli for the three stimulus
distributions. For each row of plots, the bar plot shows the probability of stimulus 1,2, and 3, from left to right. Colors and plot order
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generate steadily decreasing modulation en-
ergy in harmonics of the fundamental.
Hence, it may be that rate selectivity of
CMFs, as proxy selectors of ISIs, combined
with independent CMF (contrast) adapta-
tion, underlies the adaptive coding of tem-
poral intervals.

A phenomenological model of

selective adaptation

Selective adaptation to oddball sounds
probably involves some form of interac-
tion between adaptive effects (Ulanovsky
et al., 2004; Dean et al., 2008; Yaron et al.,
2012) and neural tuning widths on sen-
sory continua (O’Connell et al., 2011).
However, building a detailed biophysical
model of this phenomenon is challenging
given the paucity of relevant physiological
data and the vast range of possible circuits.
To this end, we generated a largely phe-
nomenological model in which neurons’
adaptive states are determined by inte-
grating prior input, which we hope will
facilitate future consideration of neural
mechanisms. We presumed that neural
tuning to sound level or ISI lies on a con-
tinuum, and that a sound holding a par-
ticular stimulus value will influence the
adaptation state of neurons tuned to that
stimulus value in an excitatory fashion,
and that of neurons tuned to adjacent
stimulus values in an inhibitory manner
(and will have no influence on the adap-
tation state of neurons tuned to distant
stimulus values). A long-term integration of this influence, me-
diated through a suitable nonlinearity, sets the adaptation state.
Although it could also represent other neural properties, most
simply this influence could be seen as some measure related to the
membrane potential of the neurons in the population. In this
case, for sound level, this would require nonmonotonic rate-level
functions for the model in its simplest form. Such neurons have
been found at many levels of the auditory brain (Sutter and
Schreiner, 1995), including in studies of adaptive coding for
sound level in the cortex (Watkins and Barbour, 2008).

Figure 4a—c illustrates the integrated influence over the time
course of a block of 100 stimuli for the three different distributions
conditions in the experiment (simulated for 10,000 blocks and aver-
aged). Each block, as in the experiments, consists of 100 trials, and on
each trial tthe stimulusu(t) = (u,(¢), u,(1), u5(t)) is either stimulus
1, (1, 0,0), stimulus 2, (0, 1, 0), or stimulus 3, (0, 0, 1), where stimuli
1, 2, and 3 lie at points along a sensory continuum. In each trial, the
probability of each stimulus is identical to that used in the psycho-
physical experiments (i.e., 80 or 10%, depending on the distribu-
tion). Dividing the neural population into three groups (to simplify
the model, at the cost of fully modeling the spread of neural rate-level
functions), group 1 neurons are positively influenced by stimulus 1,
group 2 by stimulus 2, and group 3 by stimulus 3. Additionally,
stimulus 1 negatively influences group 2, stimulus 2, group 1 and
group 3, and stimulus 3, group 2. Assuming the time constant of
integration islarge (on the order of minutes), we can simply consider
x(T), the cumulative sum of influence to a neuronal group 7 at a
given trial number T, to be expressed by the following equation:
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x(T) = 2wy, (£) + wauy(£) + wius(t) (1)

t=1

where for group 1 the input weightsw = (wy, w,, w;) will be (1,
—1/5,0), for group 2 they will be (—1/5, 1, —1/5), and for group
3 they will be (0, —1/5, 1). Observe that in Figure 4a—c, neurons
selective for (positively influenced by) the most common stimu-
lus (red) show the fastest rise in cumulative influence, as expected
from the stimulus statistics. In Figure 44, the “green” neural
group rises in cumulative influence, but the “blue” neural popu-
lation drops. This occurs because the blue group is negatively
influenced by the very common stimulus 1, whereas the green
group is only negatively influenced by the rare stimulus 2. The
opposite profile is observed in Figure 4c. In Figure 4b, as the blue
and green groups are equally negatively influenced by the com-
mon stimulus, the influence on both groups drops.

The adaptation state of a model neural group depends on the
cumulative influence it receives. The adaptation state can be con-
strued as a gain on neuronal responses, scaling their tuning func-
tions and increasing their capacity to discriminate sounds (under
reasonable assumptions, Fisher information scales with maxi-
mum firing rate; Dayan and Abbott, 2001). Although adaptation
state could also represent more complex qualities of the neural
group, such as the sharpness of tuning functions or the shifting of
the slopes of tuning functions over the stimulus range (Dean et
al., 2005).

Hypothesizing that a neuronal group’s gain increases as cu-
mulative influence increases but at large cumulative input the
gain then decreases, and that the opposite effect is seen for cumu-
lative negative influence (gain decreases, then increases), the gain
factor, G,(T), can be described as a function of cumulative influ-
ence x;(T) using the following static nonlinearity:

G =1+ a(bx)’/(1 + (bx)*) (2)

For clarity, the dependence of x and G on T and i is not shown.
The free parameters a and b are set to % and Y7 respectively. This
function is plotted in Figure 4d.

To translate the gain into probability correct (P), we assume
that probability correct for a stimulus depends on the gain of the
neural group that is positively influenced by that stimulus (we
assume this relationship to be sigmoidal).

P = 1/[1 + exp(—cG)]. (3)

Assuming stimuli are set such that the sigmoid for a gain of
G = 1 generates 80% correct performance (p = 0.8), similar to
the psychophysical data, then algebraically ¢ = —log(0.25). For
clarity, the dependence of P and G on T and i is not shown.

Estimates of P for the three stimuli for the three stimulus
distributions, smoothed over 40 trials, are plotted for the basic
model in Figure 4e—g. As in the experimental data, the most dis-
tinct oddball rises in probability correct, and the less distinct
oddball falls (Fig. 4e,g). Note that this is not the case for the
paradigm in which the high-probability stimulus lies in the mid-
dle of the overall distribution (Fig. 4f), again consistent with the
experimental data. A slightly more complex model (with inhibi-
tory influence —1/3, b = 1/4) was also developed where summa-
tion from t = 1 to T'in Equation 1 was replaced by a weighted sum
that extended back before t = 1 into a preceding stimulus distri-
bution (randomly chosen in accordance with Experiment I:
Probabilistic procedure), with weights exponentially decaying
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into the past from T (40 trial time constant, weights sum to 100);
this model gave similar results to Figure 4e—g.

Attention

Our listeners were instructed to attend each and every trial, and
confirmed (after test) that they made every effort to do so. The
necessary attention span (~30 min on average) should not tax an
average adult. It might be argued that listeners’ attention was
captured by, or directed to, the “oddball” stimulus, and that top-
down processing (e.g., of salience) could mediate such “oddball”
selectivity. However, it is equally plausible that the well estab-
lished low-level adaptive substrates can explain the data and even
provide an explanation of the nature and substrates of attention
itself, rendering attention deterministic—an involuntary statisti-
cal consequence of adaptive processing. In this scenario, “audi-
tory boredom” would also be a predictable and involuntary
consequence of the adaptive processing. Attention has featured
prominently in investigations of “cocktail party listening.” Cor-
tical entrainment (synchronization of neuronal duty-cycle with
the envelope of the stimulus) has been suggested as one low-level
substrate (Ding and Simon, 2013; Lakatos et al., 2013; Zion
Golumbic et al., 2013), and even if entrainment is not a substrate,
it is associated with, and mediated by, attention. Auditory neu-
rons appear to exist in a state of perpetual oscillation, between
excitatory and refractory states, known as the duty cycle (Lakatos
et al., 2013). Entrainment of the neuronal duty cycle to a com-
mon stimulus modulation occurs when the refractory period is
brought forward in time by excitation of the neuron (also re-
ferred to as phase-reset). Therefore, low-level adaptive processes
described earlier are inherently implicated in the process of en-
trainment. Extrapolating further, the suggested adaptive-
statistical filtering would directly mediate entrainment and hence
would mediate the putative substrate of attention.

The sensitivity to “oddball” events demonstrated here might
prove useful in exploiting the structural statistics of speech and
perhaps even music. Such processing could facilitate the extrac-
tion of statistically salient signals from within predictable noise
(such as multitalker babble, for example), and may even under-
pin higher-level statistical percepts (McDermott and Simoncelli,
2011; McDermott et al., 2013). Furthermore, if such adaptive
coding is a fundamental, low-level feature of the auditory system,
it may be that prosody, melody, and even the very structure of
language and music have evolved to exploit such adaptive coding.
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